ネットワークスペシャリスト_有限オートマトン

有限オートマトン(ゆうげん-、finite automatonFA)または有限状態機械(ゆうげんじょうたいきかい、finite state machineFSM)とは、有限個の状態と遷移と動作の組み合わせからなる数学的に抽象化された「ふるまいのモデル」である。デジタル回路プログラムの設計で使われることがあり、ある一連の状態をとったときどのように論理が流れるかを調べることができる。有限個の「状態」のうち1つの状態をとる。ある時点では1つの状態しかとらず、それをその時点の「現在状態」と呼ぶ。何らかのイベントや条件によってある状態から別の状態へと移行し、それを「遷移」と呼ぶ。それぞれの現在状態から遷移しうる状態と、遷移のきっかけとなる条件を列挙することで定義される。

実装

ハードウェアへの適用例

デジタル回路では、プログラマブルロジックデバイスプログラマブルロジックコントローラ論理ゲートフリップフロップリレーなどを使って有限オートマトンが構成される。もっと具体的に言えば、状態を格納するレジスタを持ち、状態遷移を決定する論理回路と出力を決定する論理回路を持つハードウェアが有限オートマトンであると言える。初期のハードウェア実装として Richards controller がある。
フリップフロップと出力の間には伝播遅延が存在するため、ミーリ・マシンやムーア・マシンからは非同期出力の論理回路が生成される。このため動作周波数が遅くなってしまう。ミーリ・マシンやムーア・マシンはフリップフロップから直接出力する形に変換でき、そうすることで動作周波数を高めることができる。このように変換した有限状態機械を Medvedev FSM と呼ぶことがある。その最も単純な例としてカウンタ回路がある。

コメント